References

[1]
M. Strohmeier, X. Olive, and J. Sun, “Evading the Public Eye: On Astroturfing in Open Aviation Data,” Nov. 2022, doi: 10.3390/engproc2022028007.
[2]
M. Bourgois and M. Sfyroeras, “Open Data for Air Transport Research: Dream or Reality?” in Proceedings of The International Symposium on Open Collaboration - OpenSym ’14, 2014, pp. 1–7, doi: 10.1145/2641580.2641602.
[3]
M. Capderou, Handbook of Satellite Orbits: From Kepler to GPS. Cham: Springer International Publishing, 2014.
[4]
D. J. Diston, Computational modelling and simulation of aircraft and the environment. Chichester, U.K: Wiley, 2009.
[5]
[6]
F. Technology, PowerFLARM Fusion User and Maintenance Manual,” 2021. [Online]. Available: https://flarm.com/wp-content/uploads/man/FTD-078-PowerFLARM-Fusion-User-and-Maintenance-Manual.pdf.
[7]
C. Le Tallec and B. Gravier, Device for improving the security of aircraft in visual flight regime,” WO 00/02176, Jan. 2000.
[8]
H. Wickham, D. Navarro, and T. L. Pedersen, Ggplot2: Elegant Graphics for Data Analysis, Third (under work). Springer-Verlag New York, 2022.
[9]
G. Michel and M. Strohmeier, “Flying in Private Mode: Understanding and Improving the Privacy ICAO Address Program,” Journal of Aerospace Information Systems, pp. 1–9, May 2021, doi: 10.2514/1.I010938.
[10]
S. Niarchakou and J. Simón Selva, ATFCM Operations Manual,” Network Manager, EUROCONTROL, 21.0, May 2017. [Online]. Available: http://bit.ly/2zvRCSG.
[11]
M. Schafer, X. Olive, M. Strohmeier, M. Smith, I. Martinovic, and V. Lenders, OpenSky Report 2019: Analysing TCAS in the Real World using Big Data,” Sep. 2019, doi: 10.1109/DASC43569.2019.9081686.
[12]
X. Olive et al., OpenSky Report 2020: Analysing in-flight emergencies using big data,” 2020, doi: 10.1109/DASC50938.2020.9256787.
[13]
J. Sun, X. Olive, M. Strohmeier, M. Schafer, I. Martinovic, and V. Lenders, OpenSky Report 2021: Insights on ADS-B Mandate and Fleet Deployment in Times of Crisis,” 2021, doi: 10.1109/DASC52595.2021.9594361.
[14]
D. I. A. Poll and U. Schumann, “An estimation method for the fuel burn and other performance characteristics of civil transport aircraft during cruise: Part 2, determining the aircraft’s characteristic parameters,” The Aeronautical Journal, vol. 125, no. 1284, pp. 296–340, 2021, doi: 10.1017/aer.2020.124.
[15]
D. I. A. Poll and U. Schumann, “An estimation method for the fuel burn and other performance characteristics of civil transport aircraft in the cruise. Part 1 fundamental quantities and governing relations for a general atmosphere,” The Aeronautical Journal, vol. 125, no. 1284, pp. 257–295, 2021, doi: 10.1017/aer.2020.62.
[16]
H. Wickham and G. Grolemund, R for data science. O’Reilly Media, 2017.
[17]
A. Satyanarayan, D. Moritz, K. Wongsuphasawat, and J. Heer, “Vega-lite: A grammar of interactive graphics,” IEEE transactions on visualization and computer graphics, vol. 23, no. 1, pp. 341–350, 2017.
[18]
[19]
J. Sun, J. M. Hoekstra, and J. Ellerbroek, OpenAP: An open-source aircraft performance model for air transportation studies and simulations,” Aerospace, vol. 7, no. 8, p. 104, 2020, doi: 10.3390/aerospace7080104.
[20]
J. Sun, H. Vû, X. Olive, and J. Hoekstra, “Mode S Transponder Comm-B Capabilities in Current Operational Aircraft,” Nov. 2020, doi: 10.3390/proceedings2020059004.
[21]
“Traffic library documentation.” [Online]. Available: https://traffic-viz.github.io/.
[22]
J. VanderPlas et al., “Altair: Interactive statistical visualizations for python,” Journal of Open Source Software, vol. 3, no. 32, p. 1057, 2018, doi: 10.21105/joss.01057.
[23]
H. Wickham, “A layered grammar of graphics,” Journal of Computational and Graphical Statistics, vol. 19, no. 1, pp. 3-28-3-28, 2010, doi: 10.1198/jcgs.2009.07098.
[24]
H. Wickham, “Tidy Data,” Journal of Statistical Software, vol. 59, no. 10, pp. 23–23, Sep. 2014, [Online]. Available: http://www.jstatsoft.org/v59/i10.
[25]
L. Wilkinson, The Grammar of Graphics, 2nd ed. Springer-Verlag New York, Inc., 2005.